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INTRODUCTION
Public transport services serve a large number of people on a daily basis and play an irreplaceable role
in metropolitan areas (Mouwen, 2015). The travel demand and mobility patterns are often the most
critical inputs to aid efficient and effective planning and operation of the public transport systems. In
particular, understanding, forecasting, and incorporating the demand uncertainty is necessary to optimally
determine, e.g., bus fleet size, vehicle size, public transit lines and networks. Besides, uncertainties in
public transport can result in bus bunching and unbalanced waiting flows across different stops, and
appropriately forecasting and modeling demand uncertainty is fundamental to addressing these issues.
However, most of the existing studies focused on deterministic demand estimation or mobility analytics
while the confidence interval of the estimates has received much fewer attention (Hazelton, 2008).

This study proposes a Probabilistic Graph Convolution Model for capturing spatio-temporal correla-
tions and providing travel demand estimation with a target confidence interval. Specifically, we formulate
the Origin-Destination (OD) demand matrix on a graph and define each route between one OD pair as a
node (in the context of neural network). A series of gated graph convolution layers are applied to capture
the spatial and temporal correlations simultaneously instead of RNN-based (Recurrent Neural Network)
methods which consume a larger number of iterative and accumulative errors in each future step Bai
et al. (2019). We then utilize the Bayesian-based module to quantify the model uncertainty and obtain the
passenger OD-demand interval with a specific level of confidence.

METHODOLOGY
The architecture of the proposed Probabilistic Graph Convolution Model (PGCM) is shown in Figure 1. It
consists of two components: the Mobility Forecasting Module based on Graph-based Network and the
Bayesian Approximation Module based on Monte Carlo dropout.

We first introduce the construction of the graph based on the OD-demand. OD-demand is not only
related to location but also relies on demographic attributes and land use. Following Bai et al. (2019), we
treat the city as a graph G = (V,E,A) and adopt gated mechanism for the graph convolution layers, where
V is the set of routes, E is the set of edges and A is the adjacency matrix. In the graph, let vi ∈V denotes
a node and ei j = (vi,v j) ∈ E denotes an edge. We use Pearson Correlation Coefficient to measure the
similarity si j = Pearson(xi(0− t),x j(0− t)) between the historical demand of two routes. The adjacency

matrix A ∈ RN×N is determined by the demand similarity between two routes: Ai j =

{
1 si j > ε

0 si j ≤ ε
where

ε is the threshold to decide whether a correlation exists between two routs.
The result of graph convolution layer (gcl) can be calculated as: X l+1 = (D̃−

1
2 ÃD̃−

1
2 )X lW where

Ã = A+ In, D̃ii = ∑ j Ãi j, W is the weight matrix of the layer. X l denotes the input feature of demand
in the lth gcl. Then gating mechanism Dauphin et al. (2017) and residual learning He et al. (2016)



Figure 1. The Architecture of Probabilistic Graph Convolution Model (PGCM). xi, j represents the OD
demand of jth route in ith time step. t denotes the used length of time steps, N denotes the number of
routes, D denotes the dimension of the data, m denotes the used time steps in one gated graph convolution
layer,δ represents the sigmoid function.

are adopted in the gcl to formulate the Graph Gated Convolution Layer (GGCL) which reduces the
vanishing gradient problem. And the result of lth layer is formulated as: X l+1 = (D̃−

1
2 ÃD̃−

1
2 )X lW1 +

X l)⊗ δ (D̃−
1
2 ÃD̃−

1
2 )X lW2) where δ denotes the sigmoid function and ⊗ represents the element-wise

product operation.
Then we apply a series of GGCL along the temporal axis to capture the spatial-temporal correlations.

We use the most recent t time steps historical OD demand to predict the demand in the next time step. In
detail, we reshape the input demand X ∈ Rt×N×Din into (t−m+1)×Xnew where Xnew ∈ Rm×N×Din and m
(m < t) is a hyperparameter to decide the time step length of one reshape input data. Then, each gated
graph convolution layer analyzes N routes’ spatial relations in m time steps to predict OD-demand. An
illustration of data reshaping and spatial-temporal correlations capturing is shown in Figure 1. A set of
GCCL series forms the module to capture the entire relations among t time steps. The output of lth layer is
Ŷ ∈ Rt−l×(m−1)×N×dl . Therefore, only t−1

m−1 graph convolution layers are needed to capture the temporal
dependencies which decrease the iterative steps and improves the accuracy compared with RNN-based
models. The output of the set of GCCL is Ŷ ∈ R1×N×dout where dout is the output dimension of the last
GGCL. Finally, the output is sent into a convolution network for extracting dependencies among Dout
dimensions’ data.

In the training process of Mobility Forecasting Module, the objective is to minimize the error between
the true OD-demand and the predicted values. The loss function is defined as the mean squared error for
τ time steps formulated as: L(θ) = ∑

T+τ

i=T+1 ||X̂i−Xi|| where θ denotes all the learnable parameters in the
prediction model. It is solved via back-propagation and Adam optimizer.

Motivated by Gal and Ghahramani (2016), we adopt the Bayesian deep learning approach, which
assumes that each weight and bias should obey a certain distribution instead of a certain value. This leads
to an interval of the demand that results in a certain level of confidence. The construction of the network
with dropout is not changed, so the prediction results are still reliable. Given a set of estimated values
{X̂T+1, X̂T+2, · · · , X̂T+τ ,} and true values {XT+1,XT+2, · · · ,XT+τ}, according to the Bayesian Theorem,
the posterior distribution P(W |X , X̂) is used to measure the probability of the parameters over the model.
As suggested by Damianou and Lawrence (2013), the approximation of the Gaussian process is equivalent
to a neural network with dropout. Thus, we use Gaussian distribution qθ (W |X , X̂) to measure the posterior
distribution of our model by minimizing the Kullback-Leibler divergence between them. Then the
demand intervals are given by the Bayesian Inference. First, we randomly dropout some neural units with
probability p before each layer, do the forward passes through the network, and get the prediction demand
X̂ s. Then, repeat the first step for S times, and we can get a set of predicted results {X̂1, X̂2, · · · , X̂S}. At
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Table 1. Comparison between the
Proposed Method and Existing Methods

Method RMSE MAE MAPE
ARIMA 29.6429 20.4692 0.6065
LR 28.5321 19.7717 0.5909
HA 13.4791 12.1329 0.4630
GCRN 17.6889 4.4272 0.5800
ConvLSTM 16.0453 6.4170 0.3303
GRU 10.1630 4.6386 0.2499
LSTnet 8.9854 4.0135 0.2515
Our 7.8741 4.0412 0.2411

Table 2. Comparison of Prediction Interval Performance

Level Method ConvLSTM GRU LSTNet Our

94% Span 9.3919 11.4451 8.6212 7.0105
Proportion 28.18% 50.24% 46.43% 56.41%

95% Span 9.7844 11.9545 8.9854 7.3958
Proportion 29.26% 52.59% 49.09% 57.91%

96% Span 10.2397 12.4937 9.4091 7.6551
Proportion 30.58% 55.45% 52.59% 59.66%

97% Span 10.8198 13.2014 9.9421 8.0888
Proportion 32.11% 59.09% 57.03% 61.72%

98% Span 11.5989 14.1520 10.6580 8.6712
Proportion 34.12% 63.76% 62.73% 64.27%

last, the average value µ̂ and standard error η̂ can be estimated to measure the prediction uncertainty:
µ̂ = ¯̂X = 1

S ∑
S
s=1 X̂ s and η̂2 = 1

S ∑
S
s=1(X̂

s− µ̂)2. Therefore, with the help of Standard Normal Distribution
table, we will get the prediction interval [µ̂− zα/2η̂ , µ̂ + zα/2η̂ ] with a target level of confidence.

RESULTS
We compare the proposed method with some previous algorithms: Autoregressive Integrated Moving
Average model (ARIMA), Linear Regression (LR), Historical Average (HA), Graph Convolutional
Recurrent Network (GCRN) (Seo et al., 2018), Convolutional LSTM (ConvLSTM) (Xingjian et al.,
2015), Gate Recurrent Unit (GRU) (Chung et al., 2014), and Long- and Short-term Time-series network
(LSTNet) (Lai et al., 2018).

Table 1 summarizes the results of prediction accuracy for the proposed method and the listed tools.
Although MAE of GCPM is slightly larger than that of LSTnet, RMSE and MAPE are far smaller than
those for all other methods, which means that the proposed model has fewer big errors and provides more
robust estimations. The results indicate that our model can capture spatio-temporal correlations more
reliably estimate public transport mobility.

We also collect the results about the range of prediction interval with a certain level of confidence and
the proportion of true values falling into the interval. Table 2 compares the results based on the proposed
model and the other three strategies. The results show that the proposed model has a higher proportion
while with a shorter prediction interval. This means that the proposed method produces more accurate
and robust demand estimations.

CONCLUSION
This work provides confidence interval based OD-demand forecasting through exploring the relevance
among temporal and spatial information of public transit data. We propose a Probabilistic Graph
Convolution Model. In particular, we formulate the OD-demand on a graph and employ the Mobility
Forecasting Module based on gated graph convolution layers to extract spatio-temporal correlations.
The Bayesian Approximation Module is proposed to measure the model uncertainty and provide the
confidence interval for the demand prediction. The results show that the proposed model outperforms
other state-of-the-art methods. In the future, the current work will be extended by adding more information
to the neural network to optimize the traffic flow or mobility prediction.
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